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Effects of random migration in population dynamics

Alexandre Colatb and Salomon S. Mizrahi
Departamento de Bica, CCET, Universidade Federal ded&arlos, Rodovia Washington Luiz km 235,
S@ Carlos, 13565-905, SP, Brazil
(Received 13 November 2000; revised manuscript received 23 March 2001; published 8 June 2001

We study the influence of random migration of a speéieay be insecisin the population dynamics when
initially all the individuals live in aprimordial site(their habitats may be treedVe assuméi) a finite number
of sites,(ii) that migration occurs randomly to nearest neighbors,(@ndan on-site age-structured population
whose size varies according to Ricker’'s map. We find that even for a very small migration rate, the population
density becomes appreciably affected. If migration is not allowed, depending on the value of the characteristic
parameters, the population may display a chaotic oscillation; however, with migration permitted, the chaos is
reduced or even suppressed, and the population density will oscillate with period 2 or period 4. We examined
the effects of migration through higher-order iterations of the map, entropy, and time correlation function. We
also considered a long chain, analyzit®y the spatial correlation between sites, noting the occurrence of a
transition in the correlation function between sites separated by odd and even units of distarioethad
fluctuations in time of the populations when initially all sites are populated.
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[. INTRODUCTION also reproduce afteN days and only twice too, and so on
with the following generations. This parameter-free model
The proposal by Malthugl] of a population dynamics gives a pedagogical view of the trend of the population
model, by which the human population shows a tendency t@rowth of the females; so a linear equation can represent the
grow geometrically whereas food production should increasgodel: P, ;=P,+P,_; with initial conditions Po=P;
arithmetically, was a stimulus for later investigators to de-=1, which generates the sequence of Fibonacci numbers,
velop mathematical models to express a population variatio,1,2,3,5,8,13, -.
as function of time, not only in humans but also in other Realistically, many factors influence the evolution of a
species of animals and plants. For instance, in 1844 Verhulgtopulation size, for instance, the environment being favor-
proposed a logistic differential equation for populationable or not(temperature, level of hazardous radiation, rain-
growth [2]. Thereafter other models were proposed, whiching season, et. abundance or scarcity of food, effect of
could be verified from the observation of population size ofpredators, parasites, diseases, etc. Real situations show that
species in the wild or under controlled laboratory conditionsin order to describe adequately a population dynamics, the
Modeling in population dynamics consists in proposing aequations should be nonlinear; a nonlinear equation may dis-
mechanism that can be expressed as an equation having thkay fixed points, cyclic variation or even chaotic oscillations
capacity to either retrodict the population changes along thef the population, depending on the values of the parameters.
preceding days, years or generations, and/or for predicting Models describing the variation of an age-structured
the evolution of its size from previously collected data. Thepopulation lead to equations of the general nonlinear form,
equation should contain one or more parametgrexpress
birth rate, death rate, eicand it can be either differential Pn+1=R(Pn)Py. (1)
(when time is continuoysor of finite differences(time is . . )
discrete. In the later case, a unit of time is usually consid- Usually the functiorR(P,) is not complicated, but the ana-
ered to be the lapse between two consecutive generaions 'Ytical determination of the population siz%, may not be a
is said to be age structuredAge-structured population can trivial task, and one has to resort to n_umerlcal _calculatlons.
be found in arthropod species with one short-lived adult genFfoWever before going to a computer, it is possible to make

eration per yeaf3], insects having a summer and a winter SOMe qualitative analysis of the modél. _
generatior{4]. The fixed pointsP, (attractors, repellers, ejdn Eq. (1)

A trivial and illustrative model for population growth, al- give the I_(ind of stability(or ins_tabilitw,_ the population _size
though unrealistic, goes as follows: start with one pair ofay attain at the long. The fixed points are determined by
rabbits (one male and one femaléhat reproduce afteN  Solving the equatioR(P,)=1 (there is also the trivial so-
days(time unit, the female gives birth to one pair of new- lution, P, =0). The stability in the neighborhood of the
borns(again, one male and one femat®nstituting the sec- fixéd point is determined by analyzing the eigenvalue
ond generation of rabbits and a female can reproduce onlyF dLR(P)P1/dP|p_p_and the location of the point of maxi-
twice during the span of her life. The second generation willmum P, of the curveR(P)P, thus the following cases are

possible:(a) if P,>P, and 0<A<1 thenP, is a stable

fixed point (an attractor and P,— P, monotonically. (b)
*Email address: colato@ifsc.sc.usp.br WhenP,,<P, four situations may happen wheRg, oscil-
"Email address: salomon@df.ufscar.br lates around?, : (bl) if —1<A<O0 the fixed pointP, is a
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stable equilibrium point(an attractor and P,— P, with  with all other sites not yet settled. Then the individuals are
damped oscillationg(b2) for A= —1 the fixed point is neu- allowed to emigrate to neighboring sites according to the
trally stable, asymptotically thE,, remain oscillating around so-calledrandom walk modebr to remain in the same site.
P, but P,-% P, (pitchfork bifurcation; (b3) whenA<—1  The same happens with the other sites as they become popu-
or A>1, the fixed point is unstabl@ repellej, the oscilla- lated. We analyze the dynamical effects of this migration on
tions of P, are erratic but never surpaBs,; (b4) a tangent the population density at each site; the population dynamics
bifurcation might occur ak=1. is assumed to be ruled by Ricker's md®]. We verify that

For instance, the initial population size of a strain of bac-even for a very small migration rate the population of the
teria immersed in a favorable medium of nutrients maysites are highly affected in their dynamics, for instance, at
double at each unit interval of tim& however, when the regimes of chaotic oscillations the migration suppresses the
population becomes large enough and the medium is nathaos, making the population size to oscillate with period 2
anymore sufficiently favorable for allowing the population to or period 4. For a long chain of sites, we analyzg the
double in size indefinitely at the same rate, it will eventuallyspatial correlation between sites, noting the occurrence of a
saturate at some value. Saturating population models wefgansition in the correlation function between sites separated
introduced by Verhulst, as an example let us consi@gr by odd and even units of distance, aifil the fluctuations in

time of the populations when initially all sites are populated,

2 noting that it takes much more time to stabilize the fluctua-
R(Pn)= P, @ tions in case when growth is allowed in the primordial site
1+ K only than in the case growth occurs in all sites simulta-

neously.
The fixed point isP, =K, the eigenvalue is\=1/2, and This paper contains four additional sections and it is or-
there is no point of maximum, however, the saturation valugjanized as follows: In Sec. Il we present the random migra-
of xR(x) is 2K: thereforeP, is an attractor and,—P, ,  ton equation coupled to Ricker's map for describing the
monotonically. Indeed, an exact solution can be obtained boPulation on-site variation. In Sec. Il one analyzes the ef-
a linearization transformation: writing, = 1/Q,,, Eq.(2) be-  1€CtS of migration through the higher-order iterations of the
comes linear, therefore solvable exactly, see Ref. Al- maps, the entropy, and the correlation function for the popu-

though non-linearizable unimodal maps may show a chaotitdtion densities. In Sec. IV we consider a long chal@l
oscillation. Its very existence in natural populations, as ait€9 With periodic boundary condition, we calculate the spa-
general trend is still controversial. However there is somdi@l correlation function and fluctuation in population for an
evidence that it exists in some pest insd&$)]. The occur- |q|t|ally glmost uniform d|str!but|on of individuals among.the
rence of chaotic fluctuation in pest insects is a highly desirSites. Finally, Sec. V contains a summary and conclusions.
able behavior since recent developments in dynamical sys-

tems theory allow chaos control and this could be used to Il. THE RANDOM MIGRATION MODEL

restrain the insect population growfh0]. In another study AND POPULATION DYNAMICS

of population dynamics, it was shown that a system that is . _ .

chaotic under constant environmental conditions may be- L€t us consider a set of sitesM2+ 1 trees for instance,

come ordered if the conditions change periodically or ranlabeled as—M,~M+1,...,-1,0,1... M, containing a

domly [11]. populationU mn of insegts aF sitenand at timen: I.nitially, at
Unimodal maps like Eq(1) describe global population time n=1, the primordial site haSUO’ﬁ_tO |r_1d|V|duaIs and
changes P, stands for the population or its density when &l Others have,..,=0. At the following time,n=2, any
normalization is carried ouwithout distinguishing between Individual have either already emigrated to the nearest neigh-
groups scattered among several sites. However, contact bROr treefwith probabilityp (q) to the right(left) tree] or did
tween individualgliving in different siteg through migration Sty on the same tree with probability-p—q. The prob-
exist and the effects on the population size, at each site, me8Pility of having emigrated to a farther tree, by hopping the
be quite remarkable. Chaos and migration in a dynamid'®arest ones, is zero. This is the random walk mathed
population model were studied in REL2]. The authors con- contmu_ous version is thg diffusion equ_at)owhl_ch is Imea_r.
sidered an age-structured group of spatially interbreedin@lssum'”g that at each site the population varies dynamically,
populationsa metapopulationlinked by migration and sub- then the (M +1)-dimensional map is given by
ject to environmental disturbandécal and global noises
and showed that although low densities lead to a more fre- Umn+1=PUmi1nt QUm-10t Ry(-)(1=p=qQ)Upn,
guent extinction at some sitébocal site, the decorrelating
effect of chaotic oscillations reduces the degree of sincrony m=-M,...—1,0,1...M, (3)
among populations, thus impeding the whole population ex-
tinction. When a population in a site goes extinct, recoloni-which is a set of 1 +1 coupled equations to be solved
zation by migration prevents global extinction. Other ap-simultaneously, with &p,gq<1, andp+qg=<1. The popula-
proaches can be found in Ref43-18. tion growth functionR,, represents the on-site variation of
In this paper, we report our study of the case of a singleéhe population, affecting all the individuals that are not mi-
species whose population concentrates initially in a speciajrating, in all the sites. For examplR,, could represent the
site, theprimordial site of a one-dimensionallD) chain, ratio between reproduction and death rates at each site. We
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shall consider three situation$) The functionR,,, assumes a
constant value for all trees,(ii) R,, depends on the total
population, R(P,,), where P,=3M__\ U, (iii) Ry, de-
pends on the population of each tr&g,(U, ).

Comparatively, in Ref[12] the migration is assumed oc-
curring from any site to any other site with probabiliy
according to the following linear equation

(1- p)umn+2M+1mZ Unn=MUmn,

where M is the operator representing migration and the size
of each population changes according to the map

r

Umnn+1=F(MUp ). 4 FIG. 1. Normalized bifurcation diagram fer=0 (no migration

. . representing the population density at the primordial site. For O
In our approach, differently from Ref12], we consider ;-1 the population tends to its extinction; forsk <e? there is

that the population at each sitechanges at time+1 due 4 single fixed point, the population attaining a stable equilibrium; at
to an intrinsic process, moreover any site may logain r=e%=7.39 a bifurcation occurs, the population oscillates between
individuals due to emigratiofimmigration to (from) nearest  two values(period-2 oscillatiojy for higher values or there is a
neighbors only. For cag@), r =1 means that the total popu- period-4 oscillation and so on. Doubling the periods of oscillation
lation P, remains constant?,,,;=P,,, and asymptotically goes on untilr=14.2; beyond this value the population density
the random walk makes the initial population, at the primor-oscillates chaotically. The growth rate parameter dimensionless.
dial tree, to distribute equally likely between all other trees.

For a non-negative the total population will vary with time R(P,)=re Pn/K, €)

according to equation . _ . . . .
Interestingly, Ricker's map is also able to describe epidemio-

Proi=[(p+a)(1—r)+r]P,, (5) logical dynamics, it was found to fit the data of incidence of
measles and other epidemi@0]. In Eqg. (8), K is a satura-

which is typically Malthusian since the factor in brackets is ation constant of the environment amds the maximum per
positive constant, although it depends on three parametergeneration rate at which the population multiplies or simply
each having its own physical meaningpli-q=1, each and the growth rate of the species. The mBp.,,=P,R(P,)
every individual in a tree forcefully emigrates to a neighborhave a fixed pointP, =K Inr (besides the trivial ond,
tree, thereforeP, ;=P the total population remains con- =0), eigenvaluex=1—Inr, and point of maximumP,,
stant because the process describes only the migration of thek; for K>0 only r>1 has a physical meaning, therefore
individuals that will hop from tree to tree until equilibration p,>P,,. ThusP, will remain a stable fixed point as long
is attained. Asymptotically, every tree will accommodate theas —1<\<0 (or equivalently kr<e?). Setting K

same number of individuals. In cagé) we suppose tha®  —10000 and varying in the interval (0, 100 one sees in
depends on the total populatid?,, therefore Eqs(3) and  Fig. 1 the bifurcation diagramR, X r, discarding a transient
(5) become time) displaying the following characteristics: for<r<1

B the population tends to its extinctiorP{=0), for 1=<r
Um’ﬂ+1_pUm+1vn+qu—1v“+Rm(Pn)(l_p_q)um,ﬂ'(e) <e?, P, has a single fixed point, the population attaining a
stable equilibrium P, =K Inr), atr =e?=7.39 a bifurcation

Rn(P,)=R(P,) is the same for each tree and occurs, meaning that fmzsrs_12.4, P, oscillates alterna-
tively between two valuegperiod-2 oscillation, for higher
Prr1={(p+a)[1-R(P)]+R(P,)}P,. (7)  values orr it will show a period-4 oscillation and so on, the

doubling of oscillation periods goes on unti 14.2; beyond
The fixed point is determined by the equati®iP,)=1, this valueP, oscillates chaotically. So, the bifurcation dia-
irrespective of the value op+q. If there is no migration, gram shows that the map goes chaotic by period doubling.
p+q=0, Eq.(7) reduces to Eq1) describing the dynamics Periodic oscillations of populations are found in nature, for
of a single site. In the following we will consider a specific instance, in population of lemming&1] and in the potato

model forR(P,) or Ryy(Up, ). beetleleptinotarsaof Colorado[8]; chaotic oscillations seem
to occur in the Canadian lyrnp22] and in the “gipsy moth”
A. Ricker's model limantria dispar[23].

In order to analyze the effects of the migration on the
dynamics of the population we have adopted the two-
parameter model proposed by Ricker in 1954 to describe the
dynamics of the salmon population of the Pacific coast of We will assume isotropic random migratignms= q, mean-
Canadd19]. This is represented by the mé&p), with ing that the initial population in the primordial site diffuses

B. Growth function in all sites depending
on local population density
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FIG. 2. Same as Fig. 1 but fgg=0.00001 and caséi). (a)
Treem=0; (b) for treesm=1,—1, the bifurcation diagram is the
same due to symmetry. The migration is isotrogic=(q), initially
Uoo=1 andU., ,=0. Comparing with Fig. 1, the chaotic oscilla-
tions are suppressed for many values rofbeing replaced by
period-2 or period-4 oscillations. The diagrams show similar but notand forp= 0.3, see Fig. 4, where the chaotic oscillations are
identical behavior, the population is initially present in the primor- totally suppressed, far=14.2 the population oscillates with
dial site only. period 2.

FIG. 3. Same as Fig. 2 but with a higher-migration rate,
=0.01.(a) Treem=0; (b) treesm=1,—1. Beyondr~42 the cha-
otic oscillation is suppressed. Period-4 and then period-2 oscilla-
tions substitute the chaotic oscillations of Fig. 1.

to other sites. Should we have gt g there would be a drift

velocity proportional tgp—q [the continuous version of Eq.
(3) with R,(-)=r, constant, is a Fokker-Planck equatfion
with the center of the “wave-packet” moving to the left

C. Growth function in the primordial site only

Now we go through the case when the individuals of a
population reproduce or die in the primordial tree only

(right) for p>q(p<4q). The presence of a population depen-

1075
dent growth functionR,,(-) in Eq. (3) changes the purely
diffusive motion of the individuals through the sites, this 084 %
term gives rise to a wave front of individuals advancing sym- -
metrically (whenp=q) to the left and to the right out from 064 \ \
the primordial site. We return to this point in Sec. IV. U : \
We also consider periodic boundary conditions for a sys- 0'5'4__
tem of three treedf =3, m=-1,0,1, andR,(U,, ) given
by Eg. (8). As can be seen in Fig.(® (Uy,) and 2b) 02 ¥
(Uip=U_y,) (to be compared with Fig.)lthe effects on ’
the bifurcation diagram are significant even for a small mi-
gration rate,p=0.000 01. The chaotic region becomes par- o.oo- 20 40 50 80 100

r

tially suppressed, chaos being confined to some narrow strips
of values ofr and forr>45 the population oscillates again FIG. 4. Same as Fig. 2 but with a higher-migration rae,
with period 4 and then with period 2 for a larger The  =0.3. The map is for treen=0, the others are quite similar. The
suppression of chaos increases with higher values of thehaotic oscillations are completely suppressed, replaced by a
migration-rate parameter: fgg=0.01, see Figs. (@-3(b),  period-2 oscillation.
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FIG. 5. Same as Fig. 1 but with=0.01 and caséii ), when the
growth function depends on the primordial site population only, FIG. 6. Same as Fig. 5 but with=0.1. For all trees one sees a
Egs.(9). (a) For treem=0 the chaotic oscillations persist for higher period-2 oscillation; however, the gaps between population sizes
values ofr than for case(ii), compare with Fig. 3, and period-4 are quite different(a) treem=0 and(b) treesm= * 1. In the latter,
oscillations dominate instead of period(®) treesm=1,—1, quite  the population shows a higher stability. In both figures the bifurca-
differently from Fig. 3b), the periodn and chaotic oscillations are tion occurs at the same value iof
substituted by a dense and narrow interval of oscillations.

(b)

diagram is quite different than that in Fig(d3, the periodn

and chaotic oscillations are substituted by a dense interval of
[Ro(Ugn) #0 andRy,.o(Ug,) = 1], the other trees becoming oscillations, a narrow band of fixed poinffer each value of
populated only due to immigration. Again, we consider threer), showing very small fluctuations. In Fig(& and Gb), for
trees and periodic boundary conditions. We did not find app=0.1 the chaotic oscillations are totally suppressed and
preciable qualitative changes for a greater number of treesubstituted by period-2 oscillations. These oscillations also
however we will consider a long chain in Sec. IV, where weoccur in sitesm= + 1, although for any value af the gap
analyze the spatial correlation and population fluctuationshetween the two allowed population densities is strongly re-
The set of equations is duced.

U—1n+1=P(Uon+Usp) +(1=2p)U s, ll. HIGHER-ORDER MAP ITERATIONS, ENTROPY,

_ AND CORRELATION FUNCTIONS
UO,n+1: p(Ul,n+ U —1,n) tre Uo'n/K(l_ 2p)UO,n ) (9)

In this section we discuss the effects of the random mi-

Uin+1=p(UgntU_1)+(1-2p)Uq,, gration on the population dynamics by looking at higher-
orders map iterations, entropy, and correlation function.
all trees have the same fixed poitd, , =KInr, and the Initially, we consider the first three iteration maps,

global population stabilizes(period 1 at P,=(2M Uon+1XUgn, Upn+2XUgpn, Ugni3zXUgy; in the case of

+ 1)K Inr. In Figs. 5a) and §b), we present the bifurcation no migration,p=0, and for highly chaotic oscillationsr (
diagrams ofUy, and U, for p=0.01. In Fig. %a) the = =20), the calculated numerical points will faldistributed
chaotic oscillations persist for higher values rothan for almost evenly on the continuous analytical curvi(x),
case(ii), compare with Fig. @), and period-4 oscillations whereUq,,1="1(Ugu). This shows that a chaotic time or
dominate instead of period 2. In Fig(l}, treesm= =1, the = numerical series provides essential information on the func-
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FIG. 8. Same as in Fig. 7 but nop=0.01. Note that due to
migration there occurs a scattering of the numerical points nearby
the analyticalp=0 curve.

FIG. 7. The maps of the central tree fpr=0; (8 Ug,:1
XUgn, (0) Ugps2XUgp, and(c) Ugpni3XUgp.

tional form of an unknown map, which could not be pos-

sible if the oscillations were periodionly two points for a  distributed, because the number of generated points is fixed
period-2 oscillation, four points for a period-4 oscillation, while the lengths of the curves increase.

etc). In Figs. 1a)—7(c) we setr=20 and considered 2000 Forr=20 and a small migration rat@,=0.01, the maps
points after having discarded a transi¢B00 point3, the  shown in Figs. 8)—8(c) can be compared with those of Fig.
numerical points fall on the analytical curves of the maps7(a)—7(c). Although in the first iteration map, Fig(8®, the
yi=f(x), y,=f(f(x))=Ff3(x), and yz=f(f(f(x))) numerical series shows a slight deviation from the analytical
=f()(x), respectively. As we increase the order of the itera-curve, the second and third iterations show more significant
tions, the distribution of the points become more sparselyeviations. Two effects can be perceived in the mépshe
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numerical points do not fall, precisely all, on the analytical
curves, instead they are scattered in the vicinity @ndthe
points do not distribute symmetrically around the analytical
curve but either above or below. The information about the
functional forms off(x), f®(x), f©)(x), etc. could not be
retrieved from a time series with the same accuracy as for the
p=0 case, because information is partially lost due to the
random migration. Thus, if one wants to derive the func-
tional expression of a map from a numerical or experimental
time series, care is recommendable because, if randomness is 2
present in a dynamical process the lost information prevents

the retrieval of the functiori(x). These peculiarities of the
numeric series suggest the use of an entropy function to (a)
qguantify the information loss.

S(,,)

1.00{——— - -
. 0.96 s
A. Entropy = 0.02. ”; EEE 2
We want to measure the “overlap” of the# 0 numerical @B o581

series with thegp=0 analytic map, so we introduce a modi-
fied version of the Kolmogorov entrop¥K(entropy [24], in
order to quantify the information loss due to the random
migration. The definition is based on square deviations. For a N
map X, XX,, wherex,;,=f(x,.,r,p), n=1,2,..N (N -
points after the transient,is a parametgr one divides the
domain ofx into N cells (intervalg of equal width, defined as
li=(Xj_1,%;] with i=1,2,3...N. For a discrete time series

(numerical or experimentalwe denote agx(') Sil] the (b)
pair of coordinates of the first numerical point of the series FIG. 9. The upper sides 68 and(b) stand for the entropg,,
0]
with x.* falling into cell I;, the succeeding points falling \ile the lower sidegbifurcation diagramswere inserted for the

into thls same cell are not considered since they do not corsake of comparisorfa) shows that in a chaotic region the entropy is
tribute with additional information. Then we introduce the lower for a more uniform distribution of the numerical poirtfer

quantity each value of), so a higher coincidence with the analytical curve.
For values ofr corresponding to blank window& single fixed
x® o\ 2 point or periodn oscillations in the lower part of the figuréhe
n+1 entropy attains its higher values because the map gives very few
f(X(_I)) distinct points on the analytical curvé&) is for p=0.000 01, for

n+1

Ai(r,p,N)= o\ 2 many values of the information that could be available from the
( X ) map is completely lost.

f(xD)
Z A, InA,

which gives the normalized deviation of a subset of points of Si(r,p)=—lim S¢(r,p,N)= I|m W

a discrete numerical series, with respect to a fundtia the N—e

!oomtsxrj - One no.tes thaAﬂr,p,N) (in the interval[0,1]) For p=0 and period 1 the entropy attains its highest value,
is a weight associated with each cell, wijZ;A;=1. In Si(r,0)=1, meaning that the numerical series does not con-
case of no random migratiorp0) all points fall on the  tain any meaningful information about the functidnall
curve f(x) Xx, for the N, “occupied” cells the weights are points falling on a single point of the analytical curve. In the
A;=0 whereasN—N, “empty” cells have weight 1/N  ideal case where aNl cells are “occupied,” all the weights
—Np). For instance, for a value ofleading to a single fixed A;=0, the entropyS(r,0)=0, so the numerical points be-
point (period 1), the cell to which it belongs has weight come uniformly distributed ohand the information is maxi-
=0, whereas alN— 1 other cells have weight IM—1); for ~mum. Upper sides of Figs.(® (p=0) and 9b) (p

r showing period-2 oscillation the two corresponding cells=0.00001) stand for the entrop$, xr and the bifurca-
have weightsA;=0 while all otherN—2 cells have weight tion diagram(lower side was mserted for the sake of com-
1/(N—2), and so on. Even in the more chaotic region theregparison. In Fig. €a) the entropy is lower for a more uniform
may be empty cells. So we define the entropy of the numeridistribution of points in the chaotic regioff®r each value of
cal series with respect to the functibras r), meaning that coincidence with the analytical cuftlee
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map is more faithful. For a parametercorresponding to a B. Time correlation functions

single fixed point or period-n oscillatiofthe blank windows

in the lower side of the figuyethe entropy attains its higher ~ The numerical series allows us to calculate the correlation
values because the map gives very few distinct points fobetween the on-site population density at different tirfaes
reproducing the analytical curve. Wher: 0, Fig. 9b), for  tocorrelation or between different trees at the same or at
many values ofr a bunch of information is lost since the different times(mutual correlation This quantification is
original chaotic oscillations become regular. From this weanother tool to analyze the effect of migration on the popu-
conclude that if some process produces a chaotic time seri¢gtion dynamics in each site.

a faithful reconstruction of the functiohby any method is The normalized correlation function is defined as

not guaranteed if randomness or diffusion is present in the

process.

N—I N—I
NE l-Jmln m2n+1"— (2 Umln)(zl Um2,n+|)
n=

C(Upn1,Upz )= lim - = = = . (20

N N N—I 217 NI N- 2
\/ N§=:1 (Uml,n)z—( 21 Umin N§=:1 (Umz,n)z—( 2:1 Um2,n) ]

These correlations quantify the effects of the random migrathe same set of parameters. Besides few additional regions of
tion on the “memory” of the time series, the parametés  chaos, the diagrams present evident similarity, the same kind
the time distance between iterations for the sam&l ( of resemblance occurs with other diagrams, meaning that for
=m2) or different treesfil#m2) (N should be quite large the same value gf, asymptotically the bifurcation diagrams
to allow stability). For r=10, the map presents a period-2 change weakly withv.

oscillation (the populations are perfectly correlatezhd the We analyze the spatial correlation of the populations con-
“memory time” is quite large. However, for=20, the os-  sidering, first, the growth functioR,, acting inall sites, Egs.
cillations are highly chaotic, in Figs. 1&-10h) we present (3), for r=20. In Fig. 13 we show the plots of

the plots of the autocorrelation functiod(Uy,Ug,l), for

p=0.0, 0.0001, 0.001, 0.0015, 0.01, 0.011, 0.012, 0.013, re- C(j,r,p)

spectively. The numerical points are linked by the solid lines

M M 2
while the dotted lines link their absolute values
|C(Uy,Up,l)|. One notes that the autocorrelation function (2M+1)m;M Umv”Umﬂvn_(m;M Um'”)
does not decay monotonically, as long as the chaotic oscil- = lim W W >
) . - n e
lations persg(for p< 0.0_13), the env_elope (_exh!b|ts in oscil (2M+1) 2 (Um‘n)z_ E U, n)
latory damping. For highly chaotic oscillation§=0.0, m= m=

0.0001, the pattern of damped oscillations of the envelope is
similar to a spherical Bessel functioig(x), and with in-
creasingp the chaotic oscillations become suppressed, dis;
playing a smoothed envelope. In the intervak=0.012

(11)

for p=0.2, 0.3, 0.4, when the asymptotic stability is attained.
. " However,n odd andn even times show different behavior, at
0.013[Figs. 10g)— 10h)] a transition occurs, the correla- n odd times(bullety the populations show a stronger corre-

tion time suddenly increasdgecoming quite largeso that ation than am even times(square this difference occurs

the chaotic oscillations are replaced by regular ones; thif)ecause the populations oscillate with period 2 at two differ-
shows the sensibility of the correlation time to small change e pop : pert
ent densities. Second, for higher diffusion parametfer,

inp. . . )

We do not present the plots for the autocorrelation func co?rglgt:)nvmﬁgtgr]\zogi rli?éms ;z ?Jl{aeraiﬁhsg\ﬁg:eﬁlsde: etr?_e
tion C.:(Ul’u.l’l) and mutgal corrglat|oﬁ:(Uo,U1,I) since dently of p. For j <26, thg correlatlogrlw is stronger for evar)1
we did not find any new interesting feature. than for oddj, this trend being reverted at= 27, thetransi-

tion point when sites having odgdseparation become more
IV. LONG 1D CHAIN strongly 'correlatgd.'WhiIe 'th(.a evejneor(elation decreases
monotonically with increasing, for odd j, the correlation

We now consider the asymptotic population distributionbegin increasing witl, then shows a stability in the interval
for a “long” chain of sites,M =50 (101 site$. In Figs. 11  j~11- 39, then decreases returning to its initial value. This
and 12, we present the bifurcation diagrafsisesm=0 and behavior occurs fon even orn odd times, however, it is
m=*1) to be compared to Figs. 2 and 3, respectively, formuch more evident at even times.
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FIG. 10. Autocorrelation function for the primordial site=20 and(a) p=0, (b) p=0.0001,(c) p=0.001, (d) p=0.0015,(e) p

=0.01,(f) p=0.011,(g) p=0.012,(h) p=0.013. The solid lines link the numerical points and the dotted lines link their absolute values. For
p=0.013 the chaotic oscillation vanishes, being replaced by a regular one and the autocorrelation function does not damp withlincreasing

When growth is allowed in the primordial site only, the ues betweem even anch odd times forp=0.1, 0.2, due to
correlation functions show a different behavior, see Fig. 14period-2 oscillation in populations, but not fp=0.3, 0.42
to be compared to the previous cdég. 13. Now there is  since the populations present a single fixed pointrasi-
no more strong differences between eyeand oddj, the  tion point occurs only forp=0.1 not appearing for higher
correlations fit on a single curve, although difference continvalues ofp.
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FIG. 11. Compared to Fig. 2, hetd =50 for the same set of
parameters;@ m=0, (b) m= * 1. Qualitatively the bifurcation dia-
gram shows the same behavior as Ko 3.

FIG. 13. The spatial correlation function, E4.1), as a function
of intersite distancg, in arbitrary units, when growth occurs in all
sites andM =50. (a) p=0.2, (b) p=0.3, (c) p=0.4. Asymptotic
. . . even(squares and odd(bullety times show different behaviors.

Now we analyze the population fluctuations when all sitescqrejations for even and odd valuesjcghow different trends: in
are initially (n=1) populated, however showing a slight dif- () and (c), at j =26, there is a transition point where correlation
ference in the number of individuals between each other: wtrength changes.
set 5000 individual in the primordial sitéJg 4), the consecu-
tive sites having, sequentially, a decrease of ten individuals
(U +1,17 4990U +217 498Q e ,U +50,17 4500) Considering

first the case when the growth function acts on all sites, we
1.0 | ) 04 }
=Y - a)l evenAtimes
0.8+ (a) © 0.2 (@) ;‘i";‘:“es
ool 0.0 . . — . .
u %1 0 10 20 ; 30 40 50
o,n
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- ’ N 4 —p=0.
U, 0.6 0.6 () —— P o
n - J
O 0.2
0.2 0.0 ———T——
0 10 20 j 30 40 50
0.0 :
0 80 100 FIG. 14. The spatial correlation function, E4.1) as function of

intersite distancg in arbitrary units, when growth is allowed in the
FIG. 12. Compared to Fig. 3, heM =50, for the same set of central site only and1=50. (a) p=0.1, p=0.2,(c) p=0.3, 0.4. In

parametersi@ m=0, (b) m= = 1. Qualitatively the bifurcation dia- (a) and (b) asymptotic ever{solid line) and odd(dash ling times

gram shows the same behavior as Ko 3. show different behaviors, while it) there is no more difference.
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period-2 oscillation{d) d=0.4, growth is completely suppressed,

=0.01, chaotic regimefb) p=0.1, period-2 oscillation{c) p=0.3,

fluctuations die out, only migration is allowed.
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FIG. 16. Site populations variance as a function of timi arbitrary units, when growth is allowed in the primordial site only and
M =50. (a) p=0.01, still in the chaotic regimeb) p=0.1, period-2 oscillationsc) p=0.2, period-2 oscillation, oscillation amplitude is
reduced;(d) d=0.3, no more oscillations, each site attains a single fixed gpariod 1.
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FIG. 17. Population distribution among the sites, when growth is allowed in all sites, for diffusion pargm€€00 01 and for times
n=30, 60, 90, 12qin arbitrary unit3. One sees the formation of a traveling sharp wave front.

present in Fig. 15 the plots of the variance as function ofsame trend, however populations present a single fixed point.
time or population fluctuations far= 20 and different values From the analysis of the fluctuations we conclude that
of p, with population sizes properly normalized. Fpr  when growth occurs in all sites the fluctuations stabilize in a
=0.01, Fig. 1%a), the population is still in the chaotic re- much shorter time than if growth is allowed in the primordial
gime, after a transient time fluctuations stabilize around 0.1site only, even if growtt{Ricker's map occurs in the chaotic
showing a narrow chaotic amplitude oscillation. For0.1  regime. In the latter case, the individuals should make a
[Fig. 15b)], the populations do not oscillate anymore chaoti-longer “walk” to return to the primordial site in order to
cally, after a transient the fluctuations become regular withreproduce for a second, thjrd. time, whereas in the former
wide amplitude, taking alternating fixed values for even andcase either remaining on the same site or emigrating to a
odd times. The same occurs fpr=0.3 although now the neighboring one, the reproduction is possible, therefore sta-
fluctuation amplitude is quite narrojsee insertion in Fig. bility in fluctuations is more rapidly attained.
15(c)]. For p=0.5, the individuals only migrate, they do not =~ We analyze the possible existence of a travelling wave
reproduce or die, the whole population remains constant; th&ont of the individuals: when the growth functid®y, acts in
initial variance of the population was quite small and theall sites, even for a very small diffusive parameter,
fluctuations die out asymptotically, differently for the cases=0.00001, a sharp traveling wave front appears as can be
p<0.5. seen in Fig. 17, where we plotted the populations during the
When the population reproduces in the primordial sitetransient regime at four times,=30, 60, 90, 120. From the
only, the fluctuations show a quite different quantitative andfigure, one estimates that the wave front advances at a nearly
qualitative behavior. Examining Figs. (86—16(d), firstitis  constant speed of seven sites for each 30 units of time. Con-
worth noting that much longer times were considered in orsidering now that the population increases only in the pri-
der to look for stabilization of the fluctuations. Fpe=0.1,  mordial site, even for a much larger diffusion parameger,
Fig. 16a) the chaotic regime is still present and unmtl =0.2, no wave front develops, only a diffusion pattern ap-
=30.000 the wide fluctuations did not stabilize yet, howevermpears as seen in Fig. 18, where the curves correspond, from
after going through a maximum there is a tendency of reducthe inner to the outer, to times=100, 200, 300, 400.
tion. Forp=0.1, 0.2, Figs. 1)—-16(c), the fluctuations be- Thus one sees how E(B) acts when growth occurs in all
come narrower and regular, then stabilizing asymptoticallysites: diffusion(even very smalltakes few individuals to the
however they show that populations of the sites oscillateneighboring sites whereas the growth function acts by mul-
with period 2. Fop=0.3, Fig. 1&d), the variance shows the tiplying those(initial population at the sifeat a high rate,
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67 er's map. We essentially found that if the population in the
primordial site presents chaotic oscillations, then, even for a
5 small migration-rate parameter there is a tendency to chaos
- ] reduction. In certain instances it becomes suppressed, being
o 4 replaced by period-2 or period-4 oscillations, depending on
— the value of the growth-rate parameter. The higher the mi-
><: gration rate the more rapidly the chaotic oscillations are sup-
g% pressed. Thereafter we considered the case when the popu-
=i lation increases dynamically only in the primordial site while
24 on the other sites only migration is allowed. We found that
1 for high migration rate chaotic oscillations are suppressed in
14 all sites, being substituted by a period-2 oscillation; however

the gap between the populations in the primordial site is
quite larger than that in the neighboring sites. We also stud-
40 2 o 20 4 ied the influence of the migration rate on higher-order itera-

m tions of the maps, the entropy, and correlation functions.

) o ) Thereafter we considered a long chain of 101 sites, ana-
~ FIG. 18. Population distribution among the sites, when growthyy 7iq (g) the spatial correlation for both cases: when growth
is allowed in the primordial site only, with diffusion paramefer .5 in all sites and when it occurs on the primordial site
=0.2. No wave front develops, only a diffusion pattern appearsy . and (b) the fluctuations in time of the populations,
?rldlgg)e zcgévzsé(;:o;r(;a@s_soar:gitrf;cr)m thte inner to the outer, to UMe§hen initially all the sites are slightly differently populated,

e ’ ’ y units. for both cases also. In the analysis(af we noted the oc-
currence of a transition in the correlation function between

thus creating a wave front that advances until all the avail- o
: . : ) . even and odd site distances, when the strength of the corre-
able empty sites become occupied. This mechanism remings

) , . . . ; . . ation is interchanged. In analyzin®) we verified that the
Fisher's (partial differential equation having a travelling . D . .
: . . fluctuations stabilize in a much shorter time when growth is
wave front solution, which was proposed for explaining the

spatial spread of a favored gefaediscussion is found in Ref allowed in all sites instead of being on a single site only. We
[é)] Chap. 11 In the presgnt case. as the wave front a'd_also verified that when growth is allowed in all sites a sharp

vances the number of individuals that populate the visiteér{ae\éelgﬂgswivg fr:ggtl di\ger:g{):r;ta:v:;dcmﬂ Otos:ﬁi[]d thjg\c;ecfcrg;‘t
sites is neither uniform nor changes smoothly, strong oscil? Y peed. N o

. ; : appears when growth is allowed in the primordial site, the
lations show up due to the chaotic behavior of growth func- " ™ : Lo
tion individuals spread to the sites only by diffusion.

When growth takes place in the primordial site only, the Finally, observing that chaotic oscillation in population

o ) . . “dynamics is a phenomenon rarely observed in nature, with
individuals that migrate to other sites are allowed to multiply ; . e . Lo .
: ) . N .. 2 no unmistakable identification, we think that migration with
only while returning to the primordial site, thus the diffusion i
. . : adequate diffusion parameter could be one natural mecha-
motion prevails and no wave front is created.

nism impeding its often occurrence.
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