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Effects of random migration in population dynamics
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We study the influence of random migration of a species~may be insects! in the population dynamics when
initially all the individuals live in aprimordial site~their habitats may be trees!. We assume~i! a finite number
of sites,~ii ! that migration occurs randomly to nearest neighbors, and~iii ! an on-site age-structured population
whose size varies according to Ricker’s map. We find that even for a very small migration rate, the population
density becomes appreciably affected. If migration is not allowed, depending on the value of the characteristic
parameters, the population may display a chaotic oscillation; however, with migration permitted, the chaos is
reduced or even suppressed, and the population density will oscillate with period 2 or period 4. We examined
the effects of migration through higher-order iterations of the map, entropy, and time correlation function. We
also considered a long chain, analyzing~a! the spatial correlation between sites, noting the occurrence of a
transition in the correlation function between sites separated by odd and even units of distance and~b! the
fluctuations in time of the populations when initially all sites are populated.
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I. INTRODUCTION

The proposal by Malthus@1# of a population dynamics
model, by which the human population shows a tendenc
grow geometrically whereas food production should incre
arithmetically, was a stimulus for later investigators to d
velop mathematical models to express a population varia
as function of time, not only in humans but also in oth
species of animals and plants. For instance, in 1844 Verh
proposed a logistic differential equation for populati
growth @2#. Thereafter other models were proposed, wh
could be verified from the observation of population size
species in the wild or under controlled laboratory conditio
Modeling in population dynamics consists in proposing
mechanism that can be expressed as an equation havin
capacity to either retrodict the population changes along
preceding days, years or generations, and/or for predic
the evolution of its size from previously collected data. T
equation should contain one or more parameters~to express
birth rate, death rate, etc.! and it can be either differentia
~when time is continuous! or of finite differences~time is
discrete!. In the later case, a unit of time is usually cons
ered to be the lapse between two consecutive generation~it
is said to be age structured!. Age-structured population ca
be found in arthropod species with one short-lived adult g
eration per year@3#, insects having a summer and a wint
generation@4#.

A trivial and illustrative model for population growth, a
though unrealistic, goes as follows: start with one pair
rabbits ~one male and one female! that reproduce afterN
days~time unit!, the female gives birth to one pair of new
borns~again, one male and one female! constituting the sec-
ond generation of rabbits and a female can reproduce
twice during the span of her life. The second generation w
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also reproduce afterN days and only twice too, and so o
with the following generations. This parameter-free mod
gives a pedagogical view of the trend of the populati
growth of the females; so a linear equation can represent
model: Pn115Pn1Pn21 with initial conditions P05P1
51, which generates the sequence of Fibonacci numb
1,1,2,3,5,8,13,•••.

Realistically, many factors influence the evolution of
population size, for instance, the environment being fav
able or not~temperature, level of hazardous radiation, ra
ing season, etc.!, abundance or scarcity of food, effect o
predators, parasites, diseases, etc. Real situations show
in order to describe adequately a population dynamics,
equations should be nonlinear; a nonlinear equation may
play fixed points, cyclic variation or even chaotic oscillatio
of the population, depending on the values of the parame

Models describing the variation of an age-structur
population lead to equations of the general nonlinear for

Pn115R~Pn!Pn . ~1!

Usually the functionR(Pn) is not complicated, but the ana
lytical determination of the population sizePn may not be a
trivial task, and one has to resort to numerical calculatio
However before going to a computer, it is possible to ma
some qualitative analysis of the model@5#.

The fixed pointsP* ~attractors, repellers, etc.! in Eq. ~1!
give the kind of stability~or instability!, the population size
may attain at the long. The fixed points are determined
solving the equationR(P* )51 ~there is also the trivial so-
lution, P* 50). The stability in the neighborhood of th
fixed point is determined by analyzing the eigenvaluel
[d@R(P)P#/dPuP5P

*
and the location of the point of maxi

mum Pm of the curveR(P)P, thus the following cases ar
possible:~a! if Pm.P* and 0,l,1 then P* is a stable
fixed point ~an attractor! and Pn→P* monotonically. ~b!
When Pm,P* four situations may happen wherePn oscil-
lates aroundP* : ~b1! if 21,l,0 the fixed pointP* is a
©2001 The American Physical Society01-1
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ALEXANDRE COLATO AND SALOMON S. MIZRAHI PHYSICAL REVIEW E 64 011901
stable equilibrium point~an attractor! and Pn→P* with
damped oscillations;~b2! for l521 the fixed point is neu-
trally stable, asymptotically thePn remain oscillating around
P* but Pn→” P* ~pitchfork bifurcation!; ~b3! when l,21
or l.1, the fixed point is unstable~a repeller!, the oscilla-
tions of Pn are erratic but never surpassPm ; ~b4! a tangent
bifurcation might occur atl51.

For instance, the initial population size of a strain of ba
teria immersed in a favorable medium of nutrients m
double at each unit interval of timeT; however, when the
population becomes large enough and the medium is
anymore sufficiently favorable for allowing the population
double in size indefinitely at the same rate, it will eventua
saturate at some value. Saturating population models w
introduced by Verhulst, as an example let us consider@6#

R~Pn!5
2

11
Pn

K

. ~2!

The fixed point isP* 5K, the eigenvalue isl51/2, and
there is no point of maximum, however, the saturation va
of xR(x) is 2K; thereforeP* is an attractor andPn→P* ,
monotonically. Indeed, an exact solution can be obtained
a linearization transformation: writingPn51/Qn , Eq.~2! be-
comes linear, therefore solvable exactly, see Ref.@7#. Al-
though non-linearizable unimodal maps may show a cha
oscillation. Its very existence in natural populations, as
general trend is still controversial. However there is so
evidence that it exists in some pest insects@8,9#. The occur-
rence of chaotic fluctuation in pest insects is a highly de
able behavior since recent developments in dynamical
tems theory allow chaos control and this could be used
restrain the insect population growth@10#. In another study
of population dynamics, it was shown that a system tha
chaotic under constant environmental conditions may
come ordered if the conditions change periodically or r
domly @11#.

Unimodal maps like Eq.~1! describe global population
changes (Pn stands for the population or its density whe
normalization is carried out! without distinguishing between
groups scattered among several sites. However, contac
tween individuals~living in different sites! through migration
exist and the effects on the population size, at each site,
be quite remarkable. Chaos and migration in a dyna
population model were studied in Ref.@12#. The authors con-
sidered an age-structured group of spatially interbreed
populations~a metapopulation! linked by migration and sub
ject to environmental disturbance~local and global noises!
and showed that although low densities lead to a more
quent extinction at some sites~local site!, the decorrelating
effect of chaotic oscillations reduces the degree of sincr
among populations, thus impeding the whole population
tinction. When a population in a site goes extinct, recolo
zation by migration prevents global extinction. Other a
proaches can be found in Refs.@13–18#.

In this paper, we report our study of the case of a sin
species whose population concentrates initially in a spe
site, theprimordial site, of a one-dimensional~1D! chain,
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with all other sites not yet settled. Then the individuals a
allowed to emigrate to neighboring sites according to
so-calledrandom walk modelor to remain in the same site
The same happens with the other sites as they become p
lated. We analyze the dynamical effects of this migration
the population density at each site; the population dynam
is assumed to be ruled by Ricker’s map@19#. We verify that
even for a very small migration rate the population of t
sites are highly affected in their dynamics, for instance,
regimes of chaotic oscillations the migration suppresses
chaos, making the population size to oscillate with period
or period 4. For a long chain of sites, we analyze~a! the
spatial correlation between sites, noting the occurrence
transition in the correlation function between sites separa
by odd and even units of distance, and~b! the fluctuations in
time of the populations when initially all sites are populate
noting that it takes much more time to stabilize the fluctu
tions in case when growth is allowed in the primordial s
only than in the case growth occurs in all sites simul
neously.

This paper contains four additional sections and it is
ganized as follows: In Sec. II we present the random mig
tion equation coupled to Ricker’s map for describing t
population on-site variation. In Sec. III one analyzes the
fects of migration through the higher-order iterations of t
maps, the entropy, and the correlation function for the po
lation densities. In Sec. IV we consider a long chain~101
sites! with periodic boundary condition, we calculate the sp
tial correlation function and fluctuation in population for a
initially almost uniform distribution of individuals among th
sites. Finally, Sec. V contains a summary and conclusion

II. THE RANDOM MIGRATION MODEL
AND POPULATION DYNAMICS

Let us consider a set of sites, 2M11 trees for instance
labeled as 2M ,2M11, . . . ,21,0,1, . . . ,M , containing a
populationUm,n of insects at sitem and at timen. Initially, at
time n51, the primordial site hasU0,1Þ0 individuals and
all others haveUmÞ0,150. At the following time,n52, any
individual have either already emigrated to the nearest ne
bor tree@with probabilityp (q) to the right~left! tree# or did
stay on the same tree with probability 12p2q. The prob-
ability of having emigrated to a farther tree, by hopping t
nearest ones, is zero. This is the random walk model~the
continuous version is the diffusion equation!, which is linear.
Assuming that at each site the population varies dynamica
then the (2M11)-dimensional map is given by

Um,n115pUm11,n1qUm21,n1Rm~• !~12p2q!Um,n ,

m52M , . . .21,0,1, . . .M , ~3!

which is a set of 2M11 coupled equations to be solve
simultaneously, with 0<p,q<1, andp1q<1. The popula-
tion growth functionRm represents the on-site variation o
the population, affecting all the individuals that are not m
grating, in all the sites. For example,Rm could represent the
ratio between reproduction and death rates at each site.
1-2
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EFFECTS OF RANDOM MIGRATION IN POPULATION . . . PHYSICAL REVIEW E64 011901
shall consider three situations:~i! The functionRm assumes a
constant valuer for all trees,~ii ! Rm depends on the tota
population,R(Pn), where Pn5(m52M

M Um,n , ~iii ! Rm de-
pends on the population of each tree,Rm(Um,n).

Comparatively, in Ref.@12# the migration is assumed oc
curring from any site to any other site with probabilityp,
according to the following linear equation

~12p!Um,n1
p

2M11 (
m52M

M

Um,n[MUm,n ,

whereM is the operator representing migration and the s
of each population changes according to the map

Um,n115 f ~MUm,n!. ~4!

In our approach, differently from Ref.@12#, we consider
that the population at each sitem changes at timen11 due
to an intrinsic process, moreover any site may lose~gain!
individuals due to emigration~immigration! to ~from! nearest
neighbors only. For case~i!, r 51 means that the total popu
lation Pn remains constant,Pn115Pn , and asymptotically
the random walk makes the initial population, at the prim
dial tree, to distribute equally likely between all other tre
For a non-negativer the total population will vary with time
according to equation

Pn115@~p1q!~12r !1r #Pn , ~5!

which is typically Malthusian since the factor in brackets is
positive constant, although it depends on three parame
each having its own physical meaning. Ifp1q51, each and
every individual in a tree forcefully emigrates to a neighb
tree, thereforePn115Pn , the total population remains con
stant because the process describes only the migration o
individuals that will hop from tree to tree until equilibratio
is attained. Asymptotically, every tree will accommodate
same number of individuals. In case~ii ! we suppose thatR
depends on the total populationPn , therefore Eqs.~3! and
~5! become

Um,n115pUm11,n1qUm21,n1Rm~Pn!~12p2q!Um,n ,
~6!

Rm(Pn)5R(Pn) is the same for each tree and

Pn115$~p1q!@12R~Pn!#1R~Pn!%Pn . ~7!

The fixed point is determined by the equationR(P* )51,
irrespective of the value ofp1q. If there is no migration,
p1q50, Eq.~7! reduces to Eq.~1! describing the dynamics
of a single site. In the following we will consider a specifi
model forR(Pn) or Rm(Um,n).

A. Ricker’s model

In order to analyze the effects of the migration on t
dynamics of the population we have adopted the tw
parameter model proposed by Ricker in 1954 to describe
dynamics of the salmon population of the Pacific coast
Canada@19#. This is represented by the map~1!, with
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R~Pn!5re2Pn /K. ~8!

Interestingly, Ricker’s map is also able to describe epidem
logical dynamics, it was found to fit the data of incidence
measles and other epidemics@20#. In Eq. ~8!, K is a satura-
tion constant of the environment andr is the maximum per
generation rate at which the population multiplies or simp
the growth rate of the species. The mapPn115PnR(Pn)
have a fixed pointP* 5K ln r ~besides the trivial oneP*
50), eigenvaluel512 ln r, and point of maximumPm
5K; for K.0 only r .1 has a physical meaning, therefo
P* .Pm . ThusP* will remain a stable fixed point as lon
as 21,l,0 ~or equivalently 1,r ,e2). Setting K
510 000 and varyingr in the interval (0, 100!, one sees in
Fig. 1 the bifurcation diagram (Pn3r , discarding a transien
time! displaying the following characteristics: for 0,r ,1
the population tends to its extinction (P* 50), for 1<r
,e2, Pn has a single fixed point, the population attaining
stable equilibrium (P* 5K ln r), at r 5e2.7.39 a bifurcation
occurs, meaning that fore2<r &12.4, Pn oscillates alterna-
tively between two values~period-2 oscillation!, for higher
values orr it will show a period-4 oscillation and so on, th
doubling of oscillation periods goes on untilr >14.2; beyond
this valuePn oscillates chaotically. So, the bifurcation dia
gram shows that the map goes chaotic by period doubl
Periodic oscillations of populations are found in nature,
instance, in population of lemmings@21# and in the potato
beetleleptinotarsaof Colorado@8#; chaotic oscillations seem
to occur in the Canadian lynx@22# and in the ‘‘gipsy moth’’
limantria dispar @23#.

B. Growth function in all sites depending
on local population density

We will assume isotropic random migration,p5q, mean-
ing that the initial population in the primordial site diffuse

FIG. 1. Normalized bifurcation diagram forp50 ~no migration!
representing the population density at the primordial site. Fo
,r ,1 the population tends to its extinction; for 1<r ,e2 there is
a single fixed point, the population attaining a stable equilibrium
r 5e2.7.39 a bifurcation occurs, the population oscillates betwe
two values~period-2 oscillation!; for higher values orr there is a
period-4 oscillation and so on. Doubling the periods of oscillati
goes on untilr >14.2; beyond this value the population dens
oscillates chaotically. The growth rate parameterr is dimensionless.
1-3
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ALEXANDRE COLATO AND SALOMON S. MIZRAHI PHYSICAL REVIEW E 64 011901
to other sites. Should we have setpÞq there would be a drift
velocity proportional top2q @the continuous version of Eq
~3! with Rm(•)5r , constant, is a Fokker-Planck equatio#
with the center of the ‘‘wave-packet’’ moving to the le
~right! for p.q(p,q). The presence of a population depe
dent growth functionRm(•) in Eq. ~3! changes the purely
diffusive motion of the individuals through the sites, th
term gives rise to a wave front of individuals advancing sy
metrically ~whenp5q) to the left and to the right out from
the primordial site. We return to this point in Sec. IV.

We also consider periodic boundary conditions for a s
tem of three trees,M53, m521,0,1, andRm(Um,n) given
by Eq. ~8!. As can be seen in Fig. 2~a! (U0,n̄) and 2~b!
(U1,n̄[U21,n̄) ~to be compared with Fig. 1! the effects on
the bifurcation diagram are significant even for a small m
gration rate,p50.000 01. The chaotic region becomes p
tially suppressed, chaos being confined to some narrow s
of values ofr and for r .45 the population oscillates aga
with period 4 and then with period 2 for a largerr. The
suppression of chaos increases with higher values of
migration-rate parameter: forp50.01, see Figs. 3~a!–3~b!,

FIG. 2. Same as Fig. 1 but forp50.000 01 and case~ii !. ~a!
Tree m50; ~b! for treesm51,21, the bifurcation diagram is the
same due to symmetry. The migration is isotropic (p5q), initially
U0,051 andU61,050. Comparing with Fig. 1, the chaotic oscilla
tions are suppressed for many values ofr, being replaced by
period-2 or period-4 oscillations. The diagrams show similar but
identical behavior, the population is initially present in the primo
dial site only.
01190
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and forp50.3, see Fig. 4, where the chaotic oscillations a
totally suppressed, forr *14.2 the population oscillates with
period 2.

C. Growth function in the primordial site only

Now we go through the case when the individuals o
population reproduce or die in the primordial tree on

t

FIG. 3. Same as Fig. 2 but with a higher-migration rate,p
50.01.~a! Treem50; ~b! treesm51,21. Beyondr'42 the cha-
otic oscillation is suppressed. Period-4 and then period-2 osc
tions substitute the chaotic oscillations of Fig. 1.

FIG. 4. Same as Fig. 2 but with a higher-migration rate,p
50.3. The map is for treem50, the others are quite similar. Th
chaotic oscillations are completely suppressed, replaced b
period-2 oscillation.
1-4
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EFFECTS OF RANDOM MIGRATION IN POPULATION . . . PHYSICAL REVIEW E64 011901
@R0(U0,n)Þ0 andRmÞ0(U0,n)51#, the other trees becomin
populated only due to immigration. Again, we consider th
trees and periodic boundary conditions. We did not find
preciable qualitative changes for a greater number of tr
however we will consider a long chain in Sec. IV, where w
analyze the spatial correlation and population fluctuatio
The set of equations is

U21,n115p~U0,n1U1,n!1~122p!U21,n ,

U0,n115p~U1,n1U21,n!1re2U0,n /K~122p!U0,n , ~9!

U1,n115p~U0,n1U21,n!1~122p!U1,n ,

all trees have the same fixed point,Um,* 5K ln r, and the
global population stabilizes~period 1! at P* 5(2M
11)K ln r. In Figs. 5~a! and 5~b!, we present the bifurcation
diagrams ofU0,n̄ and U61,n̄ for p50.01. In Fig. 5~a! the
chaotic oscillations persist for higher values ofr than for
case~ii !, compare with Fig. 3~a!, and period-4 oscillations
dominate instead of period 2. In Fig. 5~b!, treesm561, the

FIG. 5. Same as Fig. 1 but withp50.01 and case~iii !, when the
growth function depends on the primordial site population on
Eqs.~9!. ~a! For treem50 the chaotic oscillations persist for highe
values ofr than for case~ii !, compare with Fig. 3, and period-
oscillations dominate instead of period 2;~b! treesm51,21, quite
differently from Fig. 3~b!, the periodn and chaotic oscillations are
substituted by a dense and narrow interval of oscillations.
01190
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diagram is quite different than that in Fig. 3~b!, the periodn
and chaotic oscillations are substituted by a dense interva
oscillations, a narrow band of fixed points~for each value of
r ), showing very small fluctuations. In Fig. 6~a! and 6~b!, for
p50.1 the chaotic oscillations are totally suppressed a
substituted by period-2 oscillations. These oscillations a
occur in sitesm561, although for any value ofr the gap
between the two allowed population densities is strongly
duced.

III. HIGHER-ORDER MAP ITERATIONS, ENTROPY,
AND CORRELATION FUNCTIONS

In this section we discuss the effects of the random
gration on the population dynamics by looking at highe
orders map iterations, entropy, and correlation function.

Initially, we consider the first three iteration map
U0,n113U0,n , U0,n123U0,n , U0,n133U0,n ; in the case of
no migration,p50, and for highly chaotic oscillations (r
520), the calculated numerical points will fall~distributed
almost evenly! on the continuous analytical curvef (x),
where U0,n115 f (U0,n). This shows that a chaotic time o
numerical series provides essential information on the fu

, FIG. 6. Same as Fig. 5 but withp50.1. For all trees one sees
period-2 oscillation; however, the gaps between population s
are quite different:~a! treem50 and~b! treesm561. In the latter,
the population shows a higher stability. In both figures the bifur
tion occurs at the same value ofr.
1-5
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tional form of an unknown mapf, which could not be pos-
sible if the oscillations were periodic~only two points for a
period-2 oscillation, four points for a period-4 oscillatio
etc.!. In Figs. 7~a!–7~c! we setr 520 and considered 200
points after having discarded a transient~500 points!, the
numerical points fall on the analytical curves of the ma
y15 f (x), y25 f „f (x)…5 f (2)(x), and y35 f ( f „f (x)…)
5 f (3)(x), respectively. As we increase the order of the ite
tions, the distribution of the points become more spars

FIG. 7. The maps of the central tree forp50; ~a! U0,n11

3U0,n, ~b! U0,n123U0,n, and~c! U0,n133U0,n .
01190
s

-
ly

distributed, because the number of generated points is fi
while the lengths of the curves increase.

For r 520 and a small migration rate,p50.01, the maps
shown in Figs. 8~a!–8~c! can be compared with those of Fig
7~a!–7~c!. Although in the first iteration map, Fig. 8~a!, the
numerical series shows a slight deviation from the analyt
curve, the second and third iterations show more signific
deviations. Two effects can be perceived in the maps:~i! the

FIG. 8. Same as in Fig. 7 but nowp50.01. Note that due to
migration there occurs a scattering of the numerical points nea
the analyticalp50 curve.
1-6
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EFFECTS OF RANDOM MIGRATION IN POPULATION . . . PHYSICAL REVIEW E64 011901
numerical points do not fall, precisely all, on the analytic
curves, instead they are scattered in the vicinity and~ii ! the
points do not distribute symmetrically around the analyti
curve but either above or below. The information about
functional forms off (x), f (2)(x), f (3)(x), etc. could not be
retrieved from a time series with the same accuracy as for
p50 case, because information is partially lost due to
random migration. Thus, if one wants to derive the fun
tional expression of a map from a numerical or experimen
time series, care is recommendable because, if randomne
present in a dynamical process the lost information preve
the retrieval of the functionf (x). These peculiarities of the
numeric series suggest the use of an entropy function
quantify the information loss.

A. Entropy

We want to measure the ‘‘overlap’’ of thepÞ0 numerical
series with thep50 analytic map, so we introduce a mod
fied version of the Kolmogorov entropy (K entropy! @24#, in
order to quantify the information loss due to the rando
migration. The definition is based on square deviations. F
map xn113xn , where xn115 f (xn ,r ,p), n51,2, . . .N (N
points after the transient,r is a parameter!, one divides the
domain ofx into N cells~intervals! of equal width, defined as
I i[(xi 21 ,xi # with i 51,2,3, . . .N. For a discrete time serie
~numerical or experimental!, we denote as@xn̄

( i ) ,xn̄11
( i )

#, the
pair of coordinates of the first numerical point of the ser
with xn̄

( i ) falling into cell I i , the succeeding points falling
into this same cell are not considered since they do not c
tribute with additional information. Then we introduce th
quantity

D i~r ,p,N!5

S 12
xn̄11

( i )

f ~xn̄
( i )

!
D 2

(
i 51

N S 12
xn̄11

( i )

f ~xn̄
( i )

!
D 2 ,

which gives the normalized deviation of a subset of points
a discrete numerical series, with respect to a functionf, at the
pointsxn̄

( i ) . One notes thatD i(r ,p,N) ~in the interval@0,1#)

is a weight associated with each cell, with( i 51
N D i51. In

case of no random migration (p50) all points fall on the
curve f (x)3x, for theN0 ‘‘occupied’’ cells the weights are
D i50 whereasN2N0 ‘‘empty’’ cells have weight 1/(N
2N0). For instance, for a value ofr leading to a single fixed
point ~period 1!, the cell to which it belongs has weightD i

50, whereas allN21 other cells have weight 1/(N21); for
r showing period-2 oscillation the two corresponding ce
have weightsD i50 while all otherN22 cells have weight
1/(N22), and so on. Even in the more chaotic region th
may be empty cells. So we define the entropy of the num
cal series with respect to the functionf as
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Sf~r ,p!52 lim
N→`

Sf~r ,p,N![2 lim
N→`

(
i 51

N

D i ln D i

ln~N21!
.

For p50 and period 1 the entropy attains its highest val
Sf(r ,0)51, meaning that the numerical series does not c
tain any meaningful information about the functionf, all
points falling on a single point of the analytical curve. In th
ideal case where allN cells are ‘‘occupied,’’ all the weights
D i50, the entropyS(r ,0)50, so the numerical points be
come uniformly distributed onf and the information is maxi-
mum. Upper sides of Figs. 9~a! (p50) and 9~b! (p
50.000 01) stand for the entropy,SU0,n

3r and the bifurca-
tion diagram~lower side! was inserted for the sake of com
parison. In Fig. 9~a! the entropy is lower for a more uniform
distribution of points in the chaotic regions~for each value of
r ), meaning that coincidence with the analytical curve~the

FIG. 9. The upper sides of~a! and~b! stand for the entropySU0,n

while the lower sides~bifurcation diagrams! were inserted for the
sake of comparison.~a! shows that in a chaotic region the entropy
lower for a more uniform distribution of the numerical points~for
each value ofr ), so a higher coincidence with the analytical curv
For values ofr corresponding to blank windows~a single fixed
point or period-n oscillations in the lower part of the figure! the
entropy attains its higher values because the map gives very
distinct points on the analytical curve.~b! is for p50.000 01, for
many values ofr the information that could be available from th
map is completely lost.
1-7
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map! is more faithful. For a parameterr corresponding to a
single fixed point or period-n oscillation~the blank windows
in the lower side of the figure! the entropy attains its highe
values because the map gives very few distinct points
reproducing the analytical curve. WhenpÞ0, Fig. 9~b!, for
many values ofr a bunch of information is lost since th
original chaotic oscillations become regular. From this
conclude that if some process produces a chaotic time s
a faithful reconstruction of the functionf by any method is
not guaranteed if randomness or diffusion is present in
process.
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B. Time correlation functions

The numerical series allows us to calculate the correla
between the on-site population density at different times~au-
tocorrelation! or between different trees at the same or
different times ~mutual correlation!. This quantification is
another tool to analyze the effect of migration on the pop
lation dynamics in each site.

The normalized correlation function is defined as
C~Um1 ,Um2 ,l !5 lim
N→`

N(
n51

N2 l

Um1,nUm2,n1 l2S (
n51

N2 l

Um1,nD S (
n51

N2 l

Um2,n1 l D
AFN(

n51

N2 l

~Um1,n!22S (
n51

N2 l

Um1,nD 2GFN(
n51

N2 l

~Um2,n!22S (
n51

N2 l

Um2,nD 2G
. ~10!
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,
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These correlations quantify the effects of the random mig
tion on the ‘‘memory’’ of the time series, the parameterl is
the time distance between iterations for the same (m1
5m2) or different trees (m1Þm2) (N should be quite large
to allow stability!. For r 510, the map presents a period
oscillation ~the populations are perfectly correlated! and the
‘‘memory time’’ is quite large. However, forr 520, the os-
cillations are highly chaotic, in Figs. 10~a!–10~h! we present
the plots of the autocorrelation functionC(U0 ,U0 ,l ), for
p50.0, 0.0001, 0.001, 0.0015, 0.01, 0.011, 0.012, 0.013,
spectively. The numerical points are linked by the solid lin
while the dotted lines link their absolute value
uC(U0 ,U0 ,l )u. One notes that the autocorrelation functi
does not decay monotonically, as long as the chaotic os
lations persist~for p,0.013), the envelope exhibits an osc
latory damping. For highly chaotic oscillations,p50.0,
0.0001, the pattern of damped oscillations of the envelop
similar to a spherical Bessel function,j 0(x), and with in-
creasingp the chaotic oscillations become suppressed,
playing a smoothed envelope. In the interval,p.0.012
20.013@Figs. 10~g!– 10~h!# a transition occurs, the correla
tion time suddenly increases~becoming quite large! so that
the chaotic oscillations are replaced by regular ones;
shows the sensibility of the correlation time to small chan
in p.

We do not present the plots for the autocorrelation fu
tion C(U1 ,U1 ,l ) and mutual correlationC(U0 ,U1 ,l ), since
we did not find any new interesting feature.

IV. LONG 1D CHAIN

We now consider the asymptotic population distributi
for a ‘‘long’’ chain of sites,M550 ~101 sites!. In Figs. 11
and 12, we present the bifurcation diagrams~sitesm50 and
m561) to be compared to Figs. 2 and 3, respectively,
-

e-
s

il-

is

s-

is
s

-

r

the same set of parameters. Besides few additional region
chaos, the diagrams present evident similarity, the same
of resemblance occurs with other diagrams, meaning tha
the same value ofp, asymptotically the bifurcation diagram
change weakly withM.

We analyze the spatial correlation of the populations c
sidering, first, the growth functionRm acting inall sites, Eqs.
~3!, for r 520. In Fig. 13 we show the plots of

C~ j ,r ,p!

5 lim
n→`

~2M11! (
m52M

M

Um,nUm1 j ,n2S (
m52M

M

Um,nD 2

~2M11! (
m52M

M

~Um,n!22S (
m52M

M

Um,nD 2

~11!

for p50.2, 0.3, 0.4, when the asymptotic stability is attaine
However,n odd andn even times show different behavior, a
n odd times~bullets! the populations show a stronger corr
lation than atn even times~squares!, this difference occurs
because the populations oscillate with period 2 at two diff
ent densities. Second, for higher diffusion parameterp
50.3,0.4, when chaotic regime is already suppressed,
correlation functions acquire a regular behavior indep
dently of p. For j ,26, the correlation is stronger for evenj
than for oddj, this trend being reverted atj 527, thetransi-
tion point, when sites having odd-j separation become mor
strongly correlated. While the even-j correlation decrease
monotonically with increasingj, for odd j , the correlation
begin increasing withj, then shows a stability in the interva
j '11239, then decreases returning to its initial value. T
behavior occurs forn even orn odd times, however, it is
much more evident atn even times.
1-8
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FIG. 10. Autocorrelation function for the primordial site,r 520 and ~a! p50, ~b! p50.0001, ~c! p50.001, ~d! p50.0015, ~e! p
50.01,~f! p50.011,~g! p50.012,~h! p50.013. The solid lines link the numerical points and the dotted lines link their absolute value
p50.013 the chaotic oscillation vanishes, being replaced by a regular one and the autocorrelation function does not damp with incl.
e
14

tin
r

When growth is allowed in the primordial site only, th
correlation functions show a different behavior, see Fig.
to be compared to the previous case~Fig. 13!. Now there is
no more strong differences between evenj and oddj, the
correlations fit on a single curve, although difference con
01190
,

-

ues betweenn even andn odd times forp50.1, 0.2, due to
period-2 oscillation in populations, but not forp50.3, 0.42
since the populations present a single fixed point. Atransi-
tion point occurs only forp50.1 not appearing for highe
values ofp.
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ALEXANDRE COLATO AND SALOMON S. MIZRAHI PHYSICAL REVIEW E 64 011901
Now we analyze the population fluctuations when all si
are initially (n51) populated, however showing a slight di
ference in the number of individuals between each other:
set 5000 individual in the primordial site (U0,1), the consecu-
tive sites having, sequentially, a decrease of ten individu
(U61,154990,U62,154980, . . . ,U650,154500). Considering
first the case when the growth function acts on all sites,

FIG. 11. Compared to Fig. 2, hereM550 for the same set o
parameters,~a! m50, ~b! m561. Qualitatively the bifurcation dia-
gram shows the same behavior as forM53.

FIG. 12. Compared to Fig. 3, hereM550, for the same set o
parameters,~a! m50, ~b! m561. Qualitatively the bifurcation dia-
gram shows the same behavior as forM53.
01190
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e

FIG. 13. The spatial correlation function, Eq.~11!, as a function
of intersite distancej, in arbitrary units, when growth occurs in a
sites andM550. ~a! p50.2, ~b! p50.3, ~c! p50.4. Asymptotic
even ~squares! and odd~bullets! times show different behaviors
Correlations for even and odd values ofj show different trends; in
~b! and ~c!, at j 526, there is a transition point where correlatio
strength changes.

FIG. 14. The spatial correlation function, Eq.~11! as function of
intersite distancej, in arbitrary units, when growth is allowed in th
central site only andM550. ~a! p50.1, p50.2, ~c! p50.3, 0.4. In
~a! and ~b! asymptotic even~solid line! and odd~dash line! times
show different behaviors, while in~c! there is no more difference.
1-10
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EFFECTS OF RANDOM MIGRATION IN POPULATION . . . PHYSICAL REVIEW E64 011901
FIG. 15. Variance of site populations as a function of timen in arbitrary units, when growth occurs in all sites andM550. ~a! p
50.01, chaotic regime;~b! p50.1, period-2 oscillation;~c! p50.3, period-2 oscillation;~d! d50.4, growth is completely suppresse
fluctuations die out, only migration is allowed.

FIG. 16. Site populations variance as a function of timen in arbitrary units, when growth is allowed in the primordial site only a
M550. ~a! p50.01, still in the chaotic regime;~b! p50.1, period-2 oscillations;~c! p50.2, period-2 oscillation, oscillation amplitude i
reduced;~d! d50.3, no more oscillations, each site attains a single fixed point~period 1!.
011901-11
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FIG. 17. Population distribution among the sites, when growth is allowed in all sites, for diffusion parameterp50.000 01 and for times
n530, 60, 90, 120~in arbitrary units!. One sees the formation of a traveling sharp wave front.
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present in Fig. 15 the plots of the variance as function
time or population fluctuations forr 520 and different values
of p, with population sizes properly normalized. Forp
50.01, Fig. 15~a!, the population is still in the chaotic re
gime, after a transient time fluctuations stabilize around 0
showing a narrow chaotic amplitude oscillation. Forp50.1
@Fig. 15~b!#, the populations do not oscillate anymore chao
cally, after a transient the fluctuations become regular w
wide amplitude, taking alternating fixed values for even a
odd times. The same occurs forp50.3 although now the
fluctuation amplitude is quite narrow@see insertion in Fig.
15~c!#. For p50.5, the individuals only migrate, they do no
reproduce or die, the whole population remains constant;
initial variance of the population was quite small and t
fluctuations die out asymptotically, differently for the cas
p,0.5.

When the population reproduces in the primordial s
only, the fluctuations show a quite different quantitative a
qualitative behavior. Examining Figs. 16~a!–16~d!, first it is
worth noting that much longer times were considered in
der to look for stabilization of the fluctuations. Forp50.1,
Fig. 16~a! the chaotic regime is still present and untiln
530.000 the wide fluctuations did not stabilize yet, howe
after going through a maximum there is a tendency of red
tion. For p50.1, 0.2, Figs. 16~b!–16~c!, the fluctuations be-
come narrower and regular, then stabilizing asymptotica
however they show that populations of the sites oscill
with period 2. Forp50.3, Fig. 16~d!, the variance shows th
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same trend, however populations present a single fixed p
From the analysis of the fluctuations we conclude t

when growth occurs in all sites the fluctuations stabilize in
much shorter time than if growth is allowed in the primord
site only, even if growth~Ricker’s map! occurs in the chaotic
regime. In the latter case, the individuals should make
longer ‘‘walk’’ to return to the primordial site in order to
reproduce for a second, third, . . . time, whereas in the forme
case either remaining on the same site or emigrating t
neighboring one, the reproduction is possible, therefore
bility in fluctuations is more rapidly attained.

We analyze the possible existence of a travelling wa
front of the individuals: when the growth functionRm acts in
all sites, even for a very small diffusive parameter,p
50.000 01, a sharp traveling wave front appears as can
seen in Fig. 17, where we plotted the populations during
transient regime at four times,n530, 60, 90, 120. From the
figure, one estimates that the wave front advances at a ne
constant speed of seven sites for each 30 units of time. C
sidering now that the population increases only in the p
mordial site, even for a much larger diffusion parameterp
50.2, no wave front develops, only a diffusion pattern a
pears as seen in Fig. 18, where the curves correspond,
the inner to the outer, to timesn5100, 200, 300, 400.

Thus one sees how Eq.~3! acts when growth occurs in a
sites: diffusion~even very small! takes few individuals to the
neighboring sites whereas the growth function acts by m
tiplying those~initial population at the site! at a high rate,
1-12
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EFFECTS OF RANDOM MIGRATION IN POPULATION . . . PHYSICAL REVIEW E64 011901
thus creating a wave front that advances until all the av
able empty sites become occupied. This mechanism rem
Fisher’s ~partial differential! equation having a travelling
wave front solution, which was proposed for explaining t
spatial spread of a favored gene~a discussion is found in Ref
@5#, Chap. 11!. In the present case, as the wave front a
vances the number of individuals that populate the visi
sites is neither uniform nor changes smoothly, strong os
lations show up due to the chaotic behavior of growth fu
tion.

When growth takes place in the primordial site only, t
individuals that migrate to other sites are allowed to multip
only while returning to the primordial site, thus the diffusio
motion prevails and no wave front is created.

V. SUMMARY AND CONCLUSIONS

In the present paper, we presented an analysis of
population dynamics of a generic species~insects! whose
individuals are allowed to migrate randomly to near
neighbors sites~trees for instance!. We assumed that th
population at each site varies dynamically according to Ri

FIG. 18. Population distribution among the sites, when grow
is allowed in the primordial site only, with diffusion parameterp
50.2. No wave front develops, only a diffusion pattern appea
and the curves correspond, from the inner to the outer, to ti
n5100, 200, 300, 400~in arbitrary units!.
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er’s map. We essentially found that if the population in t
primordial site presents chaotic oscillations, then, even fo
small migration-rate parameter there is a tendency to ch
reduction. In certain instances it becomes suppressed, b
replaced by period-2 or period-4 oscillations, depending
the value of the growth-rate parameter. The higher the
gration rate the more rapidly the chaotic oscillations are s
pressed. Thereafter we considered the case when the p
lation increases dynamically only in the primordial site wh
on the other sites only migration is allowed. We found th
for high migration rate chaotic oscillations are suppressed
all sites, being substituted by a period-2 oscillation; howe
the gap between the populations in the primordial site
quite larger than that in the neighboring sites. We also st
ied the influence of the migration rate on higher-order ite
tions of the maps, the entropy, and correlation functions.

Thereafter we considered a long chain of 101 sites, a
lyzing ~a! the spatial correlation for both cases: when grow
occurs in all sites and when it occurs on the primordial s
only; and ~b! the fluctuations in time of the populations
when initially all the sites are slightly differently populate
for both cases also. In the analysis of~a! we noted the oc-
currence of a transition in the correlation function betwe
even and odd site distances, when the strength of the co
lation is interchanged. In analyzing~b! we verified that the
fluctuations stabilize in a much shorter time when growth
allowed in all sites instead of being on a single site only. W
also verified that when growth is allowed in all sites a sha
travelling wave front develops, advancing toward unocc
pied sites at a nearly constant speed. No such wavef
appears when growth is allowed in the primordial site, t
individuals spread to the sites only by diffusion.

Finally, observing that chaotic oscillation in populatio
dynamics is a phenomenon rarely observed in nature, w
no unmistakable identification, we think that migration wi
adequate diffusion parameter could be one natural me
nism impeding its often occurrence.
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